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Measuring the fluctuation-dissipation ratio in glassy systems with no perturbing field
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A method is presented for measuring the integrated linear response in Ising spin system without applying
any perturbing field. Large-scale simulations are performed in order to show how the method works. Very
precise measurements of the fluctuation-dissipation ratio are presented for three different Ising models: the
two-dimensional ferromagnetic model, the mean-field diluted three-spin model, and the three-dimensional
Edwards-Anderson model.
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Disordered and frustrated models are a fascinating bustate[1]. It has been conjectured that the effective tempera-
still poorly understood subject in contemporary statisticalture T.4=T/X plays a central role in off-equilibrium glassy
mechanics. The interest in these systems also comes frogystemq7].
their many interdisciplinary applications: from the physics of  In numerical simulations the punctual response function
glass-former liquids to that of polymers and biomoleculesR(t,s) is very noisy, while a much better signal can be ob-
from the description of error correcting codes to the study otained for the integrated response function
the computational complexity and phase transitions in theo-
retical computer science. t

Here we will use the ternglassy systenfor a generic x(t,tw)=Tf R(t,s)ds. )
model showing very slow relaxation to equilibriur]. Be- W
cause of the huge equilibration time, a glassy system may
in the out of equilibrium regime for all the experimental
times. Then a complete understanding of this regime is wh
one needs in order to correctly describe a real slow-evolvin
material. Moreover, numerical studies of the off-equilibrium
regime do not suffer from finite-size effect since very large
sizes can be used. They present finite time corrections which N
can be usually kept under control, thus allowing for better X(C)Zf X(q) dq. (4)
numerical estimations. c

Among the numerical methods that can be used in the out
of equilibrium regime, the study of the so-callfidctuation-  So the FDR can be simply written ¥{C)= —dcx(C).
dissipation ratio (FDR) [2] has been shown to be a very  The aim of this Rapid Communication is to propose and
successful ong3,4]. This method is based on the comparisonto show the efficacy of a very precise method for measuring
of how spontaneous and induced fluctuations relax. Actuallghe integrated responsg(C) and the FDRX(C) in spin
one measures an autocorrelation functi,s) [5] and the  models.
associated response functidt(t,s) and defines the FDR Up to now the best protocol for measuringC) in spin

k\(ln\lith respect to the usual definition, the temperatlirbas
algeen added in the above equation in order to simplify the
notation in the following formulas and to have a well defined
£}\/(t,tw) in the T—0 limit. In the large time limit, Eq(3) can

be rewritten as

X(t,s) through the formula systems has been the followif8,8]:
(2) Initialize the system in a random configuration.
TR(t,s)=X(t,5)5C(t,s), () (2) Quench the system at a temperatlire T, and evolve

) o _ it for t,, Monte Carlo sweep&VCS).
whereT is the temperature. At equilibrium the fluctuation-  (3) Switch on a random magnetic field of very small in-

dissipation theoreniFDT) holds, implyingX=1. tensityh and continue evolving the system while measuring
In the large times limit-s,t—o with C(t,s)—gq—the  c, (tt,) andy,(t,t,).
FDR X(t,s) converges to the limiting functioX(q). The The parametric plot ofy,(t,t,) versusCy(t,t,) con-

physical meaning of the functioXd(q) has been explained in verges to the functiory(C) in the limit t,— andh—0.
Refs.[6], where it has been shown that under some hypothgyen when extrapolations can be safely done, they always

esis(stochastic stabilitythe equation require a large numerical effort: for example, in order to
) correctly take then—0 limit, the whole simulation must be
X(q)=x(q)zf P(q’)dq’ ) repeated f(_)r many values in the linear response regime.
0 Moreover, in frustrated systems such as spin glasses the re-

sponse may have strong nonlinearities even for very small
holds. In Eq.(2) P(q) represents the overlap probability dis- probing fields and it is usually very hard to predicpriori
tributioin function in the threshold states, that is, the statesvhich is the linear response regime. Furthermore in out-of-
reached by the out-of-equilibrium dynamics on very largeequilibrium simulations the size of the linear response re-
times, which could be different from the thermodynamicalgime may change with the age of the system: A fair conjec-
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ture is that it decreases for larger times. If this would be trueto be updated. For example, in the case of two-spin interact-
extrapolations to the interesting limit would become stilling Hamiltonians the Weiss field is given b
more difficult. =2j4idijo;.

For all these reasons we consider of primary importance Under this dynamics the expectation value of jhespin
the development of a method which allows one to calculateit a timet is given by
the linear response in a spin system without applying any
probing field. After having takeanalyticallytheh—0 limit, ! . .
one is left only with thet,—c limit. This limit will be (0j(0)=Trsn| ;) [T Wiy(o(t)]o(t’ =1)) ],
somehow unavoidable as long as the only way for aging a U=t
glassy system will be to simulate it for a long tirf@]. (8)

Inspired by a recent quk by 'Chatela'l[ﬂO], we write whereg is a shorthand notation for th spin configuration,
down an analytical expression giving the integrated response

x(t,t,,) in a simulation with no probing fielf11]. the trace_i§ over all tht_a trgjeqtories{t’) with 1=<t’'<t, and
Let us specialize on systems wifll Ising spins and the transition probability is given by

Hamiltonian, (generalization to Potts variables is straight- W

forward [12]). The Hamiltonian’H, may contain some W'(¢;|;): exd Boi(hi"+hj)] 9)

quench(_ad disorder, but we do_not nged to s_,pecify it, since our ! 2 cosﬂjﬁ(h}"’+ h)lizi Ty’

calculations hold for a generit(y, either disorderd or not

disordered. In the former case the final result can be eventyygie thathiv"(&)=h}"’(¥) since it does not depend on the

ally averaged over the quenched disorder distribution, buépin ini. The transition probabilityV; only depends on the
following formulas are valid for any given disorder realiza- perturbing field on sité, such that

tion.
When the probing field is switched on the Hamiltonian ﬂW‘(f;| b
becomes H="Ho— (L hjo;, where h; are independent T =8 Wi(a|n)B(oi—a¥), (10)
identically distributed random variables with;=0 and ! h=0
hihj=_hz§i'j . For simplicity we defineh;=he; with ;=0  \yhere we have definea=tanhh").
andeig;=9 ;. o _ Now we suppose that an infinitesimal probing fibldon
The FDR for the observabla(t)=Z;z;oi(t) is given in  sjte k is switched on at time,,: h(t)=h 6(t—t,). This
terms of the correlation and response functions means that the transition probabiliy, (and only this ong
will depend on the perturbing field for all times larger than
rvaveseel t,, . Differentiation of Eq.(8) with respect to this field yields
NC(t,s)—(A(t)A(s))—Ei {ai()ai(s)), ©  the integrated response
H(AD) #a,(1) oh Kt =120
_ _ _ gitt)y I T
NR(tS) =g =2 i ahy(s) oh h=0
t
:zﬁal(t» :2 0<0-I(t)> (6) :Tr(;(t/) O'](t) H W|(t/)((;'(t,)|(;'(tl_1))
7 1 ohi(s) 4 ohy(s) v=1
t

where(-) represents the average over thermal histories. It is X 5|(S)]k(a'k(s)—0?(N(S))]
understood that in Eq6) all the derivatives are calculated in s=ty 1
h=0.

We use a discrete-time dynamics as the one taking place =(oj(DAo(t,tw)

in a Monte Carlo simulation. The timecounts the number of t

single spin updates and not the number of Monte Carlg, - _ _ W

sweepswhich is thent/N). The functionl (t) gives the in- With Ao(t,t) s:%+1 319 K(oK(S) = 0 (9))- (D
dex of the spin to be updated at tijeand so it depends on

the updating rulée.g., random or sequentiaht thetth time ~ The correlation in Eq(11) is what one has to measure in a
step the spiro; with i=I(t) is updated according to heat- numerical simulation with no perturbing field in order to get

bath probabilities the integrated linear response.
Few comments are in order. The time-integrated quantity
w Aoy only gets contributions when the spir is updated, so
exd Bo(h{"+h;)] . - oo
prob( o= o) = , (7)  most of the times it is unchanged. The contributions summed
2 coshig(h¥+h;)] up in Aoy are the differences among the actual value of the

spin o, and the expected one‘,{v. So Aoy is a random
where 3 is the inverse temperature and the Weiss flelti ~ variable with zero mean(o,)=o0'=(A o )=0, and vari-
takes into account the effect of Hamiltonidfy on the spin  ance(A o)« (t—t,)/N.
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FIG. 1. FD plot for the 2D Ising ferromagnet a=2. The FIG. 2. FD plot for the long-range three-spin model with fixed
horizontal line is the analytic long time limit. connectivity 4 aff=0.5. The line 0.537 450.502 56C is the best

o ) ) ~linear fit tot,,= 10° data withC<0.9.
In the T=0 limit Eq. (11) has a nice and simple physical

interpretation. Since forT=0 we have thato,— o-\,f’
= 0'k5h‘£’,01 thenA o takes a contribution only when the spin

o has a zero Weiss field on it, i.e., it is free to respond to a Parisi breakin
k= e . LI s g parameter on threshold states equal to
infinitesimal field. If the Weiss field is different from zero the my,(T=0.5)=0.5+0.02. The error is an estimate of system-

spin is completely frozen and it cannot respond to an mf'm_atic effects, mainly given by the slight increasenofvith t,,.

tesimal perturbing field. So the integrated response in eq ) £ th lue th di tati
(12) can be rewritten as a simple sum of correlation functions omparison or this vajue tomy, with corresponaing static

Xik(t,tw) ==& (t)o(s)), where the primed sum is over pred|ct|on§ will be done in Re.[.13].. . .
all the times Iaréer theh,, when o, is updated under a zero _ 1€ third model we studied is the three-dimensional
Weiss field, i.e., being a free spin. Edwards-Anderson mo_d_el with= tl_ couplings, which un-
We now present numerical results for three-spin model§/€r90€s a phase transition to a spin glass phasg-at.14
which are believed to belong to three different classes: fer=0.01[14]. We have simulated samples of sike=20 at
romagnetic model in two dimensiorf&D) (coarsening sys- (emperaturesT=0.75=0.66T; and T=0.5=0.44T., for
tem), diluted long-range three-spin model with fixed connec-three different waiting timeg, = 107,10%,10%. The results are
tivity 4 (discontinuous spin glagsand Edwards-Anderson shown in Fig. 3.
model in 3D (continuous spin glags For each model we  For a given temperature thg(C) curves look very simi-
have checked that the,(C;,) curve measured with the per- lar in shape, the main difference being thg-dependent
turbing field converges fon—0 to the one measured with Edwards-Anderson order parametgi(t,,), here defined as
the present method. Hereafter times will be counted in MCSthe point where the(C) curve leaves the FDT line-1C.
The first model is the ferromagnetic Ising model on theln order to exploit all the data we tried to collapse the curves
two-dimensional square lattice. We have simulated a2 before fitting. The collapse can be achieved either by shifting
=0.88T, systems of sizes 108@nd 7008 in order to check

=10? data in the regiorC(t,t,,) <0.9, which perfectly inter-
olates the datay? per degrees of freedom 0.82). It gives

the absence of any finite-size effdthe data we show are 0.5
from the 1008 samples For each waiting time,t,, 045 | T075 110 —— -
=107,10°,1¢¢, averages have been taken over 100 different T=075 ty=103 -
thermal histories, and the correspondig¢C) curves are 04r . 7205 2100 o |
shown in Fig. 1. The horizontal line is the analytical predic- 035 f_x?ﬁff:!zii T=05 1,=10° e
tion for the large times limity=1-mZ,=0.17. Numerical 03 | i w::::i%i:;_.;;_ 1
curves are c!early _co_mpatlble with the analytical asymptote .o | * ::;i;;;%;\ |
in the large times limit. ® wdlllgy X

The second model we studied is the three-spin model de %2 "--d“dﬂ.m.rml-_. |
fined on a random hypergraph with fixed connectivity 4. This 015 | .
model has been solved analytically with a one-step replica o1l il
symmetry breaking ansatz in R¢L3]. The dynamical criti-
cal temperature i943=0.755-0.01. We have run simula- 0.5 |
tions for a sizeN=999 999 at temperaturé=0.5~=0.66T Y ' ' ' ' ' ' :
and the resulting/(C) curve is shovrv)n in Fig. 2. The numdber 03 04 02 0‘6C(ttw)0.7 03 09 !
of samples used is 10 foy,= 10,1¢, 50 fort,,=10° and 20 '
for t,,=10% The straight line in Fig. 2 is a linear fit tg, FIG. 3. FD plot for the 3D Edwards-Anderson model.
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0.5 - N - y - - puter. This is a consequence of the fact that errors on the
045 | \\\ T=075 t,=10} —— 1 linear responsg(t,t,,) increase likeyt—t,, and so the num-
04 | \\ %3:;2 I:i}gzi """ - ber of samples for keeping the error gifC) constant in-
03s L *M \\ T2 a:}gg e creases more or less linearly with the waiting tibge We
1 P ~ believe that this is the main drawback of the present method
5 » . 1 for measuring the linear response: Although it is very suc-
g 025} ] cessful for small times, it becomes very noisy at larger times
= o2 | '"'ﬁ""“!n..._ _ and so it requires a huge statistics.
. g, . .
ol T ] | From this observation one could conclude that the usual
| T=075 | old method of measuring the response with a small perturb-
orr Xﬂ : ing field would eventually remain the only valid one, but this
005 | 0',..-71---" A 1 is not true. Very probably the linear regime in the perturbing
o . . . . . N field h decreases with the age of the system. In order to
0.3 04 0.5 06 07 0.8 0.9 1 remain in the linear response regime one should decrease the

Cres(tty) intensity of the perturbing field during the simulation, thus
FIG. 4. Same as Fig. 3 with rescaled variables. Inset: FDR for creasing t_he error on the for late imes. Consequently, a
T=0.75 obtained from the derivative of the rescaled data. falr comparison bem.leen the old methgd and the present .One
is very hard to do, since the way the linear response regime
decreases with the age of the system is unknown.

Let us conclude with two remarks. First, having under-
stood that the integrated response can be written as a corre-
ation function, it should be clear that all the functions

(t,ty,) andx(t,t,) can be calculated in treame simulation
or any value oft andt,,. Moreover, correlation functions
eing self-averaging quantities, it should be possible in prin-
ciple to calculate them in single simulatiorof a sufficiently

the curves such that thep-A(t,,) coincide, either by the fol-
lowing rescaling:C,{t,ty) =\ C(t,ty)/dea(tw), xredt:tw)
=1-N[1— x(t,t,) 1/dea(ty), with an arbitrary \. Both
scalings are statistically acceptable. In Fig. 4 we show th
second one which is slightly better, with=qga(10%).

If the measured data are already in the asymptotic regim
i.e., the scaling is valid for larger times, and since

) g~ .
l'm‘w??qEA(_tW) Gea>0, W? can F:onclude that the FDR is large sample. Second, the method presented here can also be
nontrivial in the three-dimensional Edwards-Anderson caq for any other Monte Carlo simulaticie.g., glass-

model, with anX(C) like the one depicted in the inset of Fig. former particle systems The only condition for using

4 for T=0.75. ) ) present analytical expressions is the discreteness of time.
The Edwards-Anderson model is the one which took the

great part of the simulation time. Indeed, in order to have Numerical simulations have been run on our Linux cluster
reasonable error bars, we ran at each of the two temperaturd3RA. | thank ICTP for kind hospitality during the comple-
10* samples fort,,<10° and almost X 10* samples fott,,  tion of this paper. This work was supported in part by the
=10* Solely thet,,=10* runs took the equivalent of more European Community’'s Human Potential Program under
than 1 y of CPUtime on a latest generation 2.0 GHz com- Contract No. HPRN-CT-2002-00307, Dyglagemem.
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